New Jersey's Ambient Ground Water Quality Monitoring Network

New Jersey Water Monitoring Council Meeting 9/24/04

Michael Serfes, NJDEP/NJ Geological Survey

Ground Water Quality

Precipitation Evaporation Riparian zone Stream Ground-water flow Confining unit

http://wwwga.usgs.gov/edu/earthgwdecline.html

Major Controls

- Natural conditions
 - water-rock interactions

- Non-point sources
 - land use

- Point Sources
 - > 6000 in NJ

Topics Presented

- Overview
 - GW Network Program History Goals
 - Present Network Background
 - Physical and Chemical Parameters analyzed
 - Network Data Availability
- New Network Design
- Status of Shallow GW quality in Coastal Plain of NJ
 - Lower Delaware and Atlantic Coastal Water Regions

GW Network Program History - Goals

- Goal 1986 to 1995: Determine status of natural ground-water quality as a function of geology (major aquifers) in New Jersey.
- <u>Goal 1996 to 1997</u>: Determine status of shallow ground water quality near receiving surface waters (Rancocas Creek and Toms River).
- <u>Goal 1998</u>: Redesign Network and Assist NAWQA in Western Piedmont.
- Goal 1999 to present: Establish and sample a 150 well permanent statewide network.

Network Background (present)

- NJDEP/USGS
 Cooperative Network
- Present annual funding:
 NJDEP \$58,700 with
 \$58,700 USGS match
- NJDEP and USGS sample
 15 wells each annually
- Samples analyzed at USGS Laboratory in Denver Colorado

Parameters Analyzed

- Field parameters
- Major ions
- Trace elements (metals)
- VOCs
- Pesticides
- Radioactivity (gross alpha)

USGS National Water Quality Laboratory

Gas chromatographic mass spectrometer used to determining presence and concentrations of volatile organic compounds.

Data Availability

- NJDEP Imap
 - http://blanco.dep.state.nj.us/website/njgsimap4/viewer.htm
- NJDEP reports
 - NJGS Geological Survey Reports and Informational Circulars
 - 305b Integrated Report
- USGS NWIS
 - http://waterdata.usgs.gov/nwis/
- USGS- Annual Water Reports

	A	gricultu	re	Urban			Undeveloped		
	Min.	Med.	Max.	Min.	Med.	Max.	Min.	Med.	Max.
T (Celsius)	12	16	22.5	15	18.2	29	12	14.5	18
DO (mg/L)	< 0.2	6.4	10.5	< 0.2	2.1	10	< 0.2	4.6	9.3
рН	4	5.1	7.9	3.8	4.9	7.8	3.7	4.7	6
TDS (mg/L)	35	194	690	57	161	816	15	27	152

New Network Design (1998)

Committee decided the network must be designed to do the following:

• Evaluate the status of ground-water quality

• Evaluate ground-water quality trends

• Evaluate contaminant sources

• *Identify* emerging issues

Use shallow wells to evaluate non-point source pollution groundwater in NJ.

Stratified as a function of Urban (60 wells), Agricultural (60 wells) and Undeveloped (30 wells) land uses.

Network consists of 150 randomly placed shallow ground-water wells. Sampled 30 per year with a 5 year network cycle frequency.

Well Site Selection - Urban Land Use Cells

- 60 cells statewide
- Equal area of urban land use in each
- One well site selected in each cell
- Aerial photographs and land use maps used
- Site visits to establish land use and access issues most important for proper site selection.

Urban/Suburban (60 Wells)

Well 30, Elmer, Salem County

Non Point Discharges

- Fertilizers and Pesticides
- Septic Discharge
- Leaky Sewers
- Automobiles
- Volatile Organic Compounds ex: MTBE
- Others

Agricultural (60 Wells)

DOM DETERMINED TO THE PROPERTY OF THE PROPERTY

Well 54, Hammonton, Atlantic County

Non Point Discharges

- Pesticides
- Nutrients
- Liming Agents
- Mobilized Metals ex:radium
- Others

Undeveloped (30 Wells)

Non Point Discharges

Well 16, Lebanan State Forest, Burlington County

Atmospheric Sources

- Metals ex:Hg
- Nitrate
- Volatile Organic Compounds: MTBE
- Pesticides
- Acid Rain

Ambient Ground Water Quality Monitoring Network Conceptual (1998) and Actual (2004)

1st round Water Quality Status from 71 Wells in Lower Delaware and Atlantic Coastal Water Regions 1999 – 2001

General Water Quality Parameters

n = 22

161

816

15

n = 18

27

152

	11 01								
	Agriculture			Urban			Undeveloped		
	Min.	Med.	Max.	Min.	Med.	Max.	Min.	Med.	Max.
T (Celsius)	12	16	22.5	15	18.2☀	29	12	14.5	18
DO (mg/L)	< 0.2	6.4	10.5	< 0.2	2.1 *	10	< 0.2	4.6	9.3
рН	4	5.1 *	7.9	3.8	4.9	7.8	3.7	4.7	6

57

Temperature: may be related to impervious surfaces

690

Dissolved Oxygen: DOC ~ same in all land uses,

chemical? temperature variations?

35

pH: liming agents?

TDS (mg/L)

TDS: road salt, fertilizers and liming agents

n = 31

194 🌞

Nitrogen

Trace Elements

Detectable Trace	N	Number of Elements	f Wells in v detected by	Maximum Value	NJ Drinking Water MCL	
Elements	N	Agricultural (N=31)	Urban (N=22)	Undeveloped (N=18)	Detected ug/L	ug/L 1996
Arsenic *	70	9	5	7	112	50 ¹
Barium	70	30	22	18	1180	2000
Cadmium *	69	6	7	1	16	5
Chromium	69	13	10	4	3.6	100
Copper	70	20	14	7	38	1300AL
Lead	70	8	8	2	11	15AL
Mercury	70	2	1	0	1.7	2
Selenium	70	13	10	4	13.1	50
Total Detections		101	77	43		

Arsenic: highest values 112 and 42 ug/l are as associated with water with low DO, high Fe and relatively high DOC.

Cadmium: The highest concentration of 16 ug/L is from a shallow well in the Kirkwood-Cohansey Aquifer in an agricultural land use area. The second, third and forth highest Cd concentrations of 4, 3.4 and 1.8 ug/L are from wells in the Marshalltown Formation in agricultural, urban and urban land uses respectively

VOC

	N	Frequency o	f Detection	Maximum	NJ Drinking	
Detectable Volatile		Agricultural	Urban	Undeveloped	Value	Water MCL
Organic Compounds		(N=31)	(N=22)	(N=18)	Detected	ug/L
					ug/L	1996
MTBE *	71	4	10	1	47.1	70
1,1,1-Trichloroethane	71	1	0	0	E 0.0555	30
1,2, Dichloropropane	71	1	0	0	0.3	5
Acetone	8	1	0	0	E 1.93	NMCL
Benzene-1,2,4-Trimethyl	8	1	0	0	E 0.027	NMCL
Benzene-1,4-Dichloro	71	1	0	0	E 0.00703	NMCL
Chloroform	71	7	8	9	0.395	100^{1}
cis-1,2-Dichloroethene	71	0	1	0	0.2	NMCL
Dichlorobromomethane	71	1	0	0	0.3	NMCL
Dichlorodifluoromethane	71	1	0	0	E 0.3	NMCL
Diisopropylether	71	0	1	0	6.3	NMCL
Methylethylketone	8	1	0	0	3	NMCL
Styrene	71	1	0	0	E 0.01	100
tert-pentylmethylether	71	0	1	0	0.105	NMCL
Tetrachloroethylene	71	4	3	0	0.487	1
Toluene	71	4	2	1	0.2	1,000
Trichloroethylene	71	1	0	0	E 0.0382	1
Total Detections		29	26	11		

MTBE: Reformulated gasoline

Chloroform: ubiquitous environmental contaminant, atmospheric deposition, septics?

Pesticides

D.44.Ll. D.4°.°.l.	N	Number of We		Maximum	NJ Drinking	
Detectable Pesticide			ted by Lar	Value	Water MCL	
Compounds	-,	Agricultural	Urban	Undeveloped	Detected	ug/L
		(N=31)	(N=22)	(N=18)	ug/L	1996
Alachlor	71	3	0	0	0.011	2
Atrazine 🔆	71	14	5	0	0.299	3
Carbaryl	71	5	1	0	E.47	NMCL
Carbofuran	71	4	0	0	E.0634	40
Dacthal	71	2	0	0	Е	NMCL
DCPA	71	1	0	0	E.0017	NMCL
Deethylatrazine **	71	15	4	0	E.206	NMCL
Diazinon	71	1	0	1	E.003	NMCL
Dieldrin	71	2	2	0	0.491	NMCL
EPTC	71	1	0	0	0.031	NMCL
Malathion	71	0	0	1	E.0037	NMCL
Metolachlor **	71	16	3	0	1.17	NMCL
Metribuzin	71	2	0	0	0.0128	NMCL
Molinate	71	1	0	0	0.0126	NMCL
Napropamide	71	2	0	0	0.0206	NMCL
Pendimethalin	71	1	0	0	0.0119	NMCL
P, P'-DDE	71	4	1	1	E.0026	NMCL
Pebulate	71	0	1	0	0.0194	NMCL
Prometon *	71	4	7	0	0.426	NMCL
Propanil	71	0	0	1	E.0034	NMCL
Tebuthiuron	71	1	1	0	0.138	NMCL
Terbacil	71	3	0	0	E.683	NMCL
Trifluralin	71	2	0	0	E.0031	NMCL
Simazine **	71	10	3	0	0.743	4
Total Detections	1	94	27	4		

^{*} Herbicides: controls the growth of weeds and grasses

^{*} Metaboite of Atrazine

Radioactivity

1st comprehensive status report - 2005

- Data from all 150 wells sampled in 1st round will be available in early 2005.
 - Data analysis by region and land use
 - Comparison with NJDEP
 DW and GW standards.
 - Interpretation of results to define contaminant sources.